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a b s t r a c t

In recent years, there has been a growing interest in analyzing and quantifying the effects
of random inputs in the solution of ordinary/partial differential equations. To this end, the
spectral stochastic finite element method (SSFEM) is the most popular method due to its
fast convergence rate. Recently, the stochastic sparse grid collocation method has emerged
as an attractive alternative to SSFEM. It approximates the solution in the stochastic space
using Lagrange polynomial interpolation. The collocation method requires only repetitive
calls to an existing deterministic solver, similar to the Monte Carlo method. However, both
the SSFEM and current sparse grid collocation methods utilize global polynomials in the
stochastic space. Thus when there are steep gradients or finite discontinuities in the sto-
chastic space, these methods converge very slowly or even fail to converge. In this paper,
we develop an adaptive sparse grid collocation strategy using piecewise multi-linear hier-
archical basis functions. Hierarchical surplus is used as an error indicator to automatically
detect the discontinuity region in the stochastic space and adaptively refine the collocation
points in this region. Numerical examples, especially for problems related to long-term
integration and stochastic discontinuity, are presented. Comparisons with Monte Carlo
and multi-element based random domain decomposition methods are also given to show
the efficiency and accuracy of the proposed method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

To accurately predict the performance of physical systems, it becomes essential for one to include the effects of input
uncertainties into the model system and understand how they propagate and alter the final solution. The presence of uncer-
tainties can be modeled in the system through reformulation of the governing equations as stochastic ordinary/partial dif-
ferential equations (SODEs/SPDEs). The traditional approach for solving SODEs/SPDEs is the Monte Carlo (MC) method. This
approach gives access to the complete statistics of the solution. It does not approximate the solution space and its conver-
gence rate does not depend on the number of independent input random variables. Furthermore, MC methods are very easy
to implement given a working deterministic code. However, the statistical approach becomes quickly intractable for com-
plex problems in multiple random dimensions. This is because the number of realizations required to acquire good statistics
is usually quite large. Furthermore, the number of realizations changes with the variance of the input parameters and the
truncation errors are hard to estimate. This has in part been alleviated by improved sampling techniques like Latin hyper-
cube sampling [1].
. All rights reserved.
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A more recent approach in modeling uncertainty is based on the spectral stochastic finite element method (SSFEM) [2]. In
this method, we project the dependent variables of the model onto a stochastic space spanned by a set of complete orthog-
onal polynomials and then a Galerkin projection scheme is used to transform the original stochastic problem into a system of
coupled deterministic equations. These polynomials are functions of a set of random variables n(h) where h is a realization of
the random event space. In the original work of Wiener [3], Gaussian random variables were used with Hermite polynomials.
Some of the early applications of SSFEM are presented in [2,4–6]. This scheme has been extended to include other random
distributions leading to generalized polynomial chaos expansions (gPC) [7]. The gPC was successfully applied to model
uncertainty propagation in various applications [8–10]. Error bounds and convergence studies [11] have shown that these
methods exhibit fast convergence rates with increasing orders of expansions. These convergence studies assume that the
solution is sufficiently smooth in the random space. Also, the computed absolute error may become unacceptably large dur-
ing long-term integration. In addition, when the solution exhibits a discontinuous dependence on the input random param-
eters, the gPC may converge slowly or even fail to converge. This is due to the global polynomial expansion used in the gPC
which cannot resolve the local discontinuity in the random space, the well-known Gibbs phenomenon which occurs in spec-
tral decompositions of discontinuous functions.

Thus, more efficient and robust schemes are needed to address the presence of discontinuities in the solution in the ran-
dom space. In [11–13], finite element basis functions were used in the random space to approximate locally the stochastic
dependence of the solution. In [14], the authors have successfully applied this method to capture unstable equilibrium in
natural convection. The wavelet basis expansion method was also utilized to address this problem [15,16]. The multi-ele-
ment generalized polynomial chaos method (ME-gPC) was introduced to address discontinuities in the random space while
preserving the convergence rate of the gPC method [17–19]. The main idea of the ME-gPC method is to decompose the space
of random inputs into disjoint random elements, then employ a gPC expansion in each element. All of the above methods
employ a Galerkin projection in the random space to transform the corresponding stochastic equations to a set of determin-
istic algebraic equations. The coupled nature of the resulting equations for the unknown coefficients in the spectral expan-
sion makes the solution of the stochastic problem extremely complex as the number of stochastic dimensions and/or the
number of expansion terms increase, the so called curse of dimensionality. In fact, computational complexity of the problem
increases combinatorially with the number of stochastic dimensions and the number of expansion terms. In addition, it is
required to develop a stochastic simulator, which is a non-trivial task especially if the underlying ODEs/PDEs have compli-
cated non-linear terms.

There have been recent efforts to couple the fast convergence of the Galerkin methods with the decoupled nature of MC
sampling, the so called stochastic collocation method. This framework represents the stochastic solution as a polynomial
approximation. This interpolant is constructed via independent function calls to the deterministic problem at different inter-
polation points. This strategy has emerged as a very attractive alternative to the spectral stochastic paradigm. However, the
construction of the set of interpolation points is non-trivial, especially in multi-dimensional random spaces. In [20], a meth-
odology was proposed wherein the Galerkin approximation is used to model the physical space and a collocation scheme is
used to sample the random space. A tensor product rule was used to interpolate the variables in stochastic space using prod-
ucts of one-dimensional (1D) interpolation functions based on Gauss quadrature points. Though this scheme leads to the
solution of uncoupled deterministic problems as in the MC method, the number of realizations required to build the inter-
polation scheme increases as power of the number of random dimensions. On the other hand, the sparse grid resulting from
the Smolyak algorithm depends weakly on dimensionality [21]. Sparse grids has been applied in many fields, such as high-
dimensional integration [22], interpolation [23–25] and solution of PDEs [26]. For an in depth review, the reader may refer to
[27]. In [28–30], the authors used the Smolyak algorithm to build sparse grid interpolants in high-dimensional stochastic
spaces based on Lagrange interpolation polynomials. Using this method, interpolation schemes can be constructed with or-
ders of magnitude reduction in the number of sampled points to give the same level of approximation (up to a logarithmic
factor) as interpolation on a uniform grid.

Error estimates for Smolyak algorithm based stochastic collocation methods have been given in [29,30], where assuming
smoothness of the solution in random space they were shown to achieve fast convergence, similar to stochastic Galerkin
methods. However, it is noted that some stochastic sparse grid collocation methods, e.g. [28,30], utilize the Lagrange poly-
nomial interpolant, which is a global polynomial basis in the random space. Therefore, as is the case with gPC that uses
orthogonal global polynomials, these methods fail to capture local behavior in the random space. To this end, we concentrate
on stochastic collocation strategies which utilize basis functions with local support, the same idea as in [11–13,15–17], in
order to resolve successfully discontinuities in the random space. In addition, we also seek for an adaptive collocation strat-
egy which can refine the sparse grid only locally around the discontinuity region. It is noted that, for the current existing
polynomial interpolation methods, e.g. [28,30], the set of interpolation points are either Clenshaw–Curtis or Gaussian quad-
rature points, which are pre-determined. So this leads to grids with no substantial room for adaptivity.

Therefore, an adaptive framework utilizing local interpolant/basis functions offers greater promise in efficiently and accu-
rately representing high-dimensional non-smooth stochastic functions. Towards this idea, the authors in [17] proposed an
adaptive version of the ME-gPC, where decay rate of local variance was used as an error indicator to adaptively split the ran-
dom element into two parts along each dimension similar to the h-adaptive approach in the deterministic finite element
method. In order to utilize the decoupled nature of the collocation algorithm, they later extended this method to the mul-
ti-element probabilistic collocation method (ME-PCM), where tensor product or sparse grid collocation is used in each ran-
dom element [31]. Then the collocation solution is projected back onto the PC basis such that one can employ the same
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adaptive criterion as in ME-gPC. These are still dimension-dependent methods, where the number of random elements in-
creases fast with the number of random dimensions. The same problem also exists for the Stochastic Galerkin [13] and Wie-
ner–Haar expansion [16] methods. Thus, there is also a need for an adaptive framework that scales linearly (O(N)) with
increasing dimensionality instead of the (O(2N)) scaling of current adaptive stochastic methods, where N is the stochastic
dimension. In this paper, we utilize a piecewise multi-linear hierarchical basis sparse grid interpolation approach towards
adaptivity that addresses the issues of locality and curse-of-dimensionality. This borrows ideas directly from wavelet-based
representation of functions [26,32–35], where the coefficients of the representation are used as error indicators. However, in
[32–35], the multi-dimensional interpolation grid is constructed through tensor product of one-dimensional wavelet expan-
sions and therefore it is not suitable for high dimensions. The method introduced in this work is different from the adaptive
wavelet method since it employs a different adaptation strategy based on the Smolyak algorithm for constructing the inter-
polation grid. The basic idea here is to use a piecewise linear hat function as a hierarchical basis function by dilation and
translation on equidistant interpolation nodes. Then the stochastic function can be represented by a linear combination
of these basis functions. The corresponding coefficients are just the hierarchical increments between two successive inter-
polation levels (hierarchical surpluses) [24,27]. The magnitude of the hierarchical surplus reflects the local regularity of the
function. For a smooth function, this value decreases to zero quickly with increasing interpolation level. On the other hand,
for a non-smooth function, a singularity is indicated by the magnitude of the hierarchical surplus. The larger this magnitude
is, the stronger the singularity. Thus, the hierarchical surplus serves as a natural error indicator for the sparse grid interpo-
lation. When this value is larger than a predefined threshold, we simply add the 2N neighboring points to the current point. A
key motivation towards using this framework is its linear scaling with dimensionality, in contrast to the N-dimensional tree
(2N) scaling of the h-type adaptive framework (e.g. the framework in [17]). In addition, such a framework guarantees that a
user-defined error threshold is met. We will also show that it is rather easier with this approach to extract realizations, high-
er-order statistics, and the probability density function (PDF) of the solution.

It is noted here that, in previous works, there exists the so called dimension-adaptive (anisotropic) sparse grid methods
employing the concept of generalized sparse grids, which was originally developed in [36] and further extended to interpo-
lation in [25]. In recent papers [37,38], the authors have applied this method to various stochastic problems. In this frame-
work, the structure of the solution was detected on-the-fly to sample the space in a non-isotropic way. The most sensitive
dimension is detected and adaptively sampled. Then all of the interpolation points from the next level are added along this
dimension. Error bounds and convergence issues for the anisotropic sparse grid collocation technique are discussed in [38].
However, this framework requires the underlying discontinuity aligned along the lines of the underlying sparse grid, which
is not the case in most problems. The method introduced in this paper is different from the above adaptive strategy. We only
add locally around the current point the 2N neighboring points from the next interpolation level instead of all of the inter-
polation points along only one dimension. In this way, besides the detection of important dimensions, additional singular-
ities and local variations in a stochastic function can be found and resolved [26,27,39]. It is also noted that the work in [38]
uses Lagrange polynomial interpolation and thus cannot resolve discontinuities.

The contribution of this work is as follows: (1) We utilize the concepts of hierarchical sparse grid collocation. This pro-
vides a new point of view on the sparse grid collocation method leading to the concept of adaptivity; (2) We develop a locally
refined adaptive sparse grid collocation method with 2N linear scaling for the refinement, which further reduces the curse of
dimensionality; (3) By purely based on the interpolation, it is shown that this method not only can calculate easily the mean
and the variance, but also can extract the realization of the solution as a function of the random variables in order to examine
its local behavior. This is another issue not addressed in earlier works [28–31,37,38].

This paper is organized as follows: In the next section, the mathematical framework of SODEs/SPDEs is formulated. In
Section 3, the conventional sparse grid collocation (CSGC) and adaptive sparse grid collocation (ASGC) methodologies are
detailed. The numerical examples are given in Section 4. Finally, concluding remarks are provided in Section 5.

2. Problem definition

In this section, we follow the notation in [28,30]. Define a complete probability space ðX;F ;PÞ with sample space X
which corresponds to the outcomes of some experiments, F � 2X is the r-algebra of subsets in X (these subsets are called
events) and P : F ! ½0;1� is the probability measure. Also, define D as a d-dimensional bounded domain D � Rd ðd ¼ 1;2;3Þ
with boundary @ D. We are interested to find a stochastic function u : X� D! R such that for P-almost everywhere (a.e.)
x 2X, the following equation holds:
Lðx;x; uÞ ¼ f ðx;xÞ; 8x 2 D ð1Þ
and
Bðx; uÞ ¼ gðxÞ; 8x 2 @D; ð2Þ
where x = (x1, . . . ,xd) are the coordinates in Rd;L is (linear/non-linear) differential operator, and B is a boundary operator. In
the most general case, the operators L and B as well as the driving terms f and g, can be assumed random. We assume that
the boundary has sufficient regularity and that f and g are properly defined such that the problem in Eqs. (1) and (2) is well-
posed P – a.e. x 2X.
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2.1. The finite-dimensional noise assumption and the Karhunen–Loève expansion

Any second-order stochastic process can be represented as a random variable at each spatial and temporal location.
Therefore, we require an infinite number of random variables to completely characterize a stochastic process. This poses
a numerical challenge in modeling uncertainty in physical quantities that have spatio-temporal variations, hence necessitat-
ing the need for a reduced-order representation (i.e., reducing the infinite-dimensional probability space to a finite-dimen-
sional one). Such a procedure, commonly known as a ‘finite-dimensional noise assumption’ [20,28], can be achieved through
any truncated spectral expansion of the stochastic process in the probability space. One such choice is the Karhunen–Loève
(K–L) expansion [2].

For example, let the force term f(x, x) be a second-order stochastic process, and its correlation function be R(x1, x2), where
x1 and x2 are spatial coordinates. By definition, the correlation function is real, symmetric, and positive definite. All its eigen-
functions are mutually orthonormal and form a complete set spanning the function space to which f(x, x) belongs. Then the
truncated K–L expansion takes the following form:
f ðx;xÞ ¼ E½f �ðxÞ þ
XN

i¼1

ffiffiffiffi
ki

p
/iðxÞYiðxÞ; ð3Þ
where fYiðxÞgN
i¼1 are uncorrelated random variables. If the process is a Gaussian process, then they are standard identically

independent N(0, 1) Gaussian random variables. Also, /i(x) and ki are the eigenfunctions and eigenvalues of the correlation
function, respectively. They are the solutions of the following eigenvalue problem:
Z

D
Rðx1; x2Þ/iðx2Þdx2 ¼ ki/iðx1Þ: ð4Þ
The number of terms needed to approximate a stochastic process depends on the decay rate of the eigenvalues. Generally, a
higher correlation length would lead to a rapid decay of the eigenvalues.

Following a decomposition such as the K–L expansion, the random inputs can be characterized by a set of N random vari-
ables, e.g.
Lðx;x; uÞ ¼ Lðx;Y1ðxÞ; . . . ; YNðxÞ; uÞ;
f ðx;xÞ ¼ f ðx;Y1ðxÞ; . . . ; YNðxÞÞ: ð5Þ
Hence, by using the Doob–Dynkin lemma [40], the solution of Eqs. (1) and (2) can be described by the same set of random
variables fYiðxÞgN

i¼1, i.e.,
uðx;xÞ ¼ uðx; Y1ðxÞ; . . . ;YNðxÞÞ: ð6Þ
Thus, the use of the spectral expansion guarantees that the finite-dimensional noise assumption is satisfied and effectively
reduces the infinite probability space to a N-dimensional space.

When using the K–L expansion, we here assume that we obtain a set of mutually independent random variables. The issue
of non-independent random variables can be resolved by introducing an auxiliary density function [20]. In this work, we
assume that fYiðxÞgN

i¼1 are independent random variables with probability density function qj. Let Ci be the image of Yi. Then
qðYÞ ¼
YN
i¼1

qiðYiÞ; 8Y 2 C ð7Þ
is the joint probability density of Y = (Y1, . . . ,YN) with support
C �
YN
i¼1

Ci 2 RN : ð8Þ
Then the problem in Eqs. (1) and (2) can be restated as: Find the stochastic function u : C� D! R such that
Lðx;Y; uÞ ¼ f ðx;YÞ; ðx;YÞ 2 D� C ð9Þ
subject to the corresponding boundary conditions
Bðx;Y; uÞ ¼ gðx;YÞ; ðx;YÞ 2 @D� C: ð10Þ
We emphasize here that the dimensionality N of the space C is usually determined by the number of the independent ran-
dom variables Yi, for example from the K–L expansion in Eq. (3). In addition, we also assume without loss of generality that
the support of the random variables Yi is Ci = [0, 1] for i = 1, . . . ,N and thus the bounded stochastic space is a N-hypercube
C = [0, 1]N, since any bounded stochastic space can always be mapped to the above hypercube.

Therefore, the original infinite-dimensional stochastic problem is restated as a finite-dimensional problem. Then we can
apply any stochastic method (gPC expansion or stochastic collocation) in the random space and the resulting equations be-
come a set of deterministic equations in the physical space that can be solved by any standard deterministic discretization
technique, e.g. the finite element method. The theory and properties of the gPC expansion have been well documented in
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various references [2,7,9]. The regularity of the solution with respect to the stochastic space C affects the convergence rate of
such stochastic techniques, especially of approximations of global support. However, such regularity is usually not known a
priori in many problems. This has motivated the development of the multi-element based stochastic domain decomposition
method. The basic idea is to divide the stochastic space into several disjoint elements and solve each subproblem using gPC
or conventional probabilistic collocation method, which results in the ME-gPC and ME-PCM methods, respectively. The adap-
tive procedure for these methods can be found in [17,18,31]. Local variance is used as an indicator for adaptivity. A param-
eter h1 is defined to identify which element is to be refined and another parameter h2 is set to determine in which dimension
the element is going to split. These problems are addressed in this work using the adaptive stochastic sparse grid collocation
method which is introduced in the following section.
3. Stochastic collocation method

The basic idea of this method is to have a finite element approximation for the spatial domain and approximate the multi-
dimensional stochastic space using interpolation functions on a set of collocation points fYigM

i¼1 2 C. Suppose we can find a
finite element approximate solution u of the deterministic solution of the problem in Eqs. (9) and (10) for each point Yi, we
are then interested in constructing an interpolant of u by using linear combinations of the solutions u(�,Yi). The multi-dimen-
sional interpolation can be constructed through either full-tensor product of 1D interpolation rule or by the so called sparse
grid interpolation method based on the Smolyak algorithm [21]. Since in the full-tensor product case the number of support
points grows very quickly as the number of stochastic dimensions increases, we will mainly focus on the sparse grid method
and discuss the proposed adaptivity algorithm.

3.1. Smolyak algorithm

The Smolyak algorithm provides a way to construct interpolation functions based on a minimal number of points in mul-
ti-dimensional space. Using the Smolyak method, univariate interpolation formulae are extended to the multivariate case by
using tensor products in a special way. This provides an interpolation strategy with potentially orders of magnitude reduc-
tion in the number of support nodes required. The algorithm provides a linear combination of tensor products chosen in such
a way that the interpolation error is nearly the same as for full-tensor product in higher dimensions.

Let us consider a smooth function f : ½0;1�N ! R. In the 1D case (N = 1), we consider the following interpolation formula to
approximate f:
U iðf Þ ¼
Xmi

j¼1

f ðYi
jÞ � ai

j ð11Þ
with the set of support nodes
Xi ¼ fYi
jjY

i
j 2 ½0;1� for j ¼ 1;2; . . . ;mig; ð12Þ
where i 2 N; ai
j � ajðYi

jÞ 2 Cð½0;1�Þ are the interpolation nodal basis functions, and mi is the number of elements of the set Xi.
We assume that a sequence of formulae Eq. (11) is given with different i. In the multivariate case (N > 1), the tensor product
formulae are
ðU i1 � � � � � U iN Þðf Þ ¼
Xm1

j1¼1

� � �
XmN

jN¼1

f ðYi1
j1
; . . . ; YiN

jN
Þ � ðai1

j1
� � � � � aiN

jN
Þ; ð13Þ
which serve as building blocks for the Smolyak algorithm.
The Smolyak algorithm constructs the sparse interpolant Aq,N using products of 1D functions. Aq,N is given as [23–25]
Aq;Nðf Þ ¼
X

q�Nþ16jij6q

ð�1Þq�jij �
N � 1
q� jij

� �
� ðU i1 � � � � � U iN Þ ð14Þ
with q P N;AN�1;N ¼ 0 and where the multi-index i ¼ ði1; . . . ; iNÞ 2 NN and jij = i1 + � � � + iN. Here ik, k = 1, . . . ,N, is the level of
interpolation along the kth direction. The Smolyak algorithm builds the interpolation function by adding a combination of 1D
functions of order ik with the constraint that the sum total (jij = i1 + � � � + iN) across all dimensions is between q � N + 1 and q.
The structure of the algorithm becomes clearer when one considers the incremental interpolant, Di given by [23–25]
U0 ¼ 0; Di ¼ U i � U i�1: ð15Þ
The Smolyak interpolation Aq;N is then given by
Aq;Nðf Þ ¼
X
jij6q

ðDi1 � � � � � DiN Þðf Þ ¼ Aq�1;Nðf Þ þ
X
jij¼q

ðDi1 � � � � � DiN Þðf Þ: ð16Þ
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To compute the interpolant Aq;Nðf Þ from scratch, one needs to compute the function at the nodes covered by the sparse grid
Hq;N
Hq;N ¼
[

q�Nþ16jij6q

ðXi1 � � � � � XiN Þ: ð17Þ
The construction of the algorithm allows one to utilize all the previous results generated to improve the interpolation (this is
immediately obvious from Eq. (16)). By choosing appropriate points for interpolating the 1D function, one can ensure that
the sets of points Xi are nested (Xi � Xi+1). To extend the interpolation from level i � 1 to i, one only has to evaluate the func-
tion at the grid points that are unique to Xi, that is, at Xi

D ¼ Xi n Xi�1. Thus, to go from an order q � 1 interpolation to an order
q interpolation in N dimensions, one only needs to evaluate the function at the differential nodes DHq;N given by
DHq;N ¼
[
jij¼q

ðXi1
D � � � � � XiN

D Þ: ð18Þ
3.2. Choice of collocation points and the nodal basis functions

It is more advantageous to choose the collocation points in a nested fashion to obtain many recurring points with increas-
ing q. One of the choice is the Clenshaw–Curtis grid at the non-equidistant extrema of the Chebyshev polynomials [28,30,38].
For any choice of mi > 1, the sets Xi ¼ fYi

1; . . . ; Yi
mi
g are given by
mi ¼
1; if i ¼ 1;
2i�1 þ 1; if i > 1;

�
ð19Þ

Yi
j ¼

ð� cosðpðj� 1Þ=ðmi � 1ÞÞ þ 1Þ=2; for j ¼ 1; . . . ;mi; if mi > 1;
0:5; for j ¼ 1; if mi ¼ 1:

�
ð20Þ
With this selection, the resulting sets are nested, i.e., Hq;N � Hqþ1;N . The corresponding univariate nodal basis functions are
Lagrange characteristic polynomials.
ai
j ¼

1; for i ¼ 1; andQmi

k¼1
k–j

Y�Yi
k

Yi
j�Yi

k
; for i > 1 and j ¼ 1; . . . ;mi:

8>><
>>: ð21Þ
It is noted that by using this grid, the support nodes are pre-determined as in Eq. (20). Thus, this grid is not suitable if we
want to use adaptivity. Therefore, we propose to use the Newton–Cotes grid using equidistant support nodes. By using equi-
distant nodes, it is easy to refine the grid locally. However, it is well known that for Lagrange polynomial interpolation on
equidistant nodes, the error may not go to zero as the number of nodes increases due to the well-known Runge’s phenom-
enon [25]. To this end, we propose to use the linear hat function as the univariate nodal basis function [22]. The piecewise
linear hat function has a local support in contrast to the global support of the polynomial in Eq. (21), so it can be used to
resolve discontinuities in the stochastic space.

We first consider the 1D interpolation rule Eq. (11) with the support nodes defined as
mi ¼
1; if i ¼ 1;
2i�1 þ 1; if i > 1;

�
ð22Þ

Yi
j ¼

j�1
mi�1 ; for j ¼ 1; . . . ;mi; if mi > 1;

0:5; for j ¼ 1; if mi ¼ 1:

(
ð23Þ
It is noted that the resulting grid points are also nested and the grid has the same number of points as the Clenshaw–Curtis
grid.

In the linear setting, the simplest choice of 1D basis function is the standard linear hat function [24,26,27]:
aðYÞ ¼
1� jYj; if Y 2 ½�1;1�;
0; otherwise:

�
ð24Þ
This mother of all piecewise linear basis functions can be used to generate an arbitrary ai
j with local support ½Yi

j � 21�i;

Yi
j þ 21�i� by dilation and translation, i.e.,
a1
1 ¼ 1 for i ¼ 1; and ð25Þ

ai
j ¼

1� ðmi � 1Þ � jY � Yi
jj; if jY � Yi

jj < 1=ðmi � 1Þ;
0; otherwise;

(
ð26Þ
for i > 1 and j = 1, . . . ,mi. The N-dimensional multi-linear basis functions can be constructed using tensor products as follows:
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ai
jðYÞ :¼ ai1

j1
� � � � � aiN

jN
¼
YN

k¼1

aik
jk
; ð27Þ
where the multi-index j ¼ ðj1; . . . ; jNÞ 2 NN and jk, k = 1, . . . ,N, denotes the location of a given support node in the kth dimen-
sion from Eq. (23). Thus, we define the functional space
V i :¼ spanfai
j : i 2 NN ; j 2 NN; jk ¼ 1; . . . ;mik ; k ¼ 1; . . . ;Ng ð28Þ
as the space of piecewise multi-linear functions for a give multi-index i. Then the family of functions fai
jg is just the standard

nodal basis of the finite-dimensional space Vi. If we want to apply the Smolyak algorithm using nodal basis, it is straightfor-
ward to use Eq. (14). It can be rewritten as
Aq;Nðf Þ ¼
X

q�Nþ16jij6q

ð�1Þq�jij �
N � 1
q� jij

� �
�
X

j

f ðYi1
j1
; . . . ;YiN

jN
Þ � ai

j: ð29Þ
Now we can define the sparse grid interpolation space VC as
VC :¼ 	
q�Nþ16jij6q

V i: ð30Þ
It is noted that the coefficients of the approximation in the stochastic space mainly depend on the function values at the
interpolation points. Thus they do not give much information about the regularity of the solution in the random space.
Therefore, the interpolation formulae provided above are not appropriate for an adaptive implementation.

3.3. From nodal basis to multivariate hierarchical basis

Let us return to the incremental interpolation formula Eq. (16). This formula takes advantage of the nested nature of the
grid points, X(i) � Xi+1 [24]. Here, we follow closely [24] to provide a clear development of the derivation of the hierarchical
basis and the hierarchical surpluses.

We start from the 1D interpolation formula Eq. (11) using nodal basis as discussed in the previous section. By the defi-
nition of Eq. (15), we can write
Diðf Þ ¼ U iðf Þ � U i�1ðf Þ: ð31Þ
With
U iðf Þ ¼
X
Yi

j2Xi

ai
j � f ðY

i
jÞ; and U i�1ðf Þ ¼ U iðU i�1ðf ÞÞ; ð32Þ
we obtain [24]
Diðf Þ ¼
X
Yi

j2Xi

ai
j � f ðY

i
jÞ �

X
Yi

j2Xi

ai
j � U i�1ðf ÞðYi

jÞ ¼
X
Yi

j2Xi

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ; ð33Þ
and, since f ðYi
jÞ � U i�1ðf ÞðYi

jÞ ¼ 0;8Yi
j 2 Xi�1, we obtain
Diðf Þ ¼
X

Yi
j2Xi

D

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ ð34Þ
recalling that Xi
D ¼ Xi n Xi�1. Clearly, Xi

D has mi
D ¼ mi �mi�1 points, since Xi�1 � Xi. By consecutively numbering the elements

in Xi
D, and denoting the jth point of Xi

D as Yi
j, we can re-write the above equation as [24]
Diðf Þ ¼
Xmi

D

j¼1

ai
j � ðf ðY

i
jÞ � U i�1ðf ÞðYi

jÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wi

j

: ð35Þ
Here, we define wi
j as the 1D hierarchical surplus, which is just the difference between the function values at the current and

the previous interpolation levels. We also define the set of functions ai
j as the hierarchical basis functions. Fig. 1 shows the

comparison of the nodal and the hierarchical basis functions [24]. Fig. 2 shows a comparison of the nodal and hierarchical
interpolation in 1D [24].

For example, in Fig. 2, if we work in the nodal basis of interpolation level 3, then the function f is approximated as from Eq.
(11)
f ¼ f ðY3
1Þa3

1 þ f ðY3
2Þa3

2 þ f ðY3
3Þa3

3 þ f ðY3
4Þa3

4 þ f ðY3
5Þa3

5: ð36Þ
On the other hand, the hierarchical basis for the same interpolation level from Eq. (35) is given as follows:



Fig. 1. Nodal basis functions a3
j ; Y

3
j 2 X3 (left) and hierarchical basis functions ai

j with the support nodes Yi
j 2 Xi

D; i ¼ 1;2;3 (right) for the Newton–Cotes grid.

Fig. 2. Nodal (left) versus hierarchical (right) interpolation in 1D.
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f ¼ w1
1a1

1 þw2
1a2

1 þw2
2a2

2 þw3
1a3

1 þw3
2a3

2: ð37Þ
Please note the different numbering used for the hierarchical and nodal basis functions. It is seen that the hierarchical basis
utilizes only some of the nodal basis functions form level 1 to 3 instead of all of the nodal basis functions in level 3. It is for
this reason that we refer to this representation as the ‘hierarchical basis’.

For the multi-dimensional case, we define a hierarchical difference space
W i :¼ V i n 	
N

k¼1
V i�ek ; ð38Þ
where ek denotes the kth unit vector. To complete this definition, we formally set
V i�ek ¼ 0; if ik ¼ 0: ð39Þ
Thus, through a new multi-index set
Bi :¼ fj 2 NN : Yik
jk
2 Xik

D for jk ¼ 1; . . . ;mik
D ; k ¼ 1; . . . ;Ng; ð40Þ
we can obtain another basis of Vi, the hierarchical basis
fai
j : j 2 Bk;k 6 ig; ð41Þ
which also leads to
W i :¼ spanfai
j : j 2 Big: ð42Þ
It is clear that the following decomposition holds [26,27]:
V i :¼ 	
i1

k1¼1
� � � 	

iN

kN¼1
Wk :¼ 	

k6i
Wk: ð43Þ
This equation provides another view on the nodal basis function space Vi. Note that in Eqs. (41) and (43), ‘ 6 ’ refers to the
element-wise relation for multi-indexes.

We next obtain the sparse grid interpolation formula for the multivariate case in a hierarchical form. From Eq. (16), we
can write
Aq;Nðf Þ ¼ Aq�1;Nðf Þ þ DAq;Nðf Þ; ð44Þ
DAq;Nðf Þ ¼

X
jij¼q

ðDi1 � � � � � DiN Þ ð45Þ
with AN�1;N ¼ 0. This can be further simplified as
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Aq�1;Nðf Þ ¼
X
jij6q�1

ðDi1 � � � � � DiN Þ ð46Þ
and
DAq;Nðf Þ ¼
X
jij¼q

X
j2Bi

ðai1
j1
� � � � � aiN

jN
Þ � ðf ðYi1

j1
; . . . ; YiN

jN
Þ � Aq�1;Nðf ÞðYi1

j1
; . . . ;YiN

jN
ÞÞ: ð47Þ
Here, we define
wi
j ¼ f ðYi1

j1
; . . . ;YiN

jN
Þ � Ajij�1;Nðf ÞðYi1

j1
; . . . ;YiN

jN
Þ ð48Þ
as the hierarchical surplus, which is just the difference between the function value at a point in the current level of inter-
polation and the corresponding value at the previous interpolation level [24,26]. Eq. (47) actually provides a hierarchical sub-
space splitting of VC
VC :¼ 	
jij6q

W i: ð49Þ
Thus, we can work either in the nodal basis functional space or the hierarchical basis space. For smooth functions, the hier-
archical surpluses tend to zero as the interpolation level tends to infinity as shown in Fig. 2. On the other hand, for non-
smooth functions, steep gradients/finite discontinuities are indicated by the magnitude of the hierarchical surplus. The big-
ger the magnitude is, the stronger the underlying discontinuity is. Therefore, the hierarchical surplus is a natural candidate
for error control and implementation of adaptivity.

3.4. Interpolation error

As a matter of notation, the interpolation function used will be denoted AN+k,N, where k is called the level of the Smolyak
interpolation. This is because we always start the construction from the N-dimensional multi-index i = (1, . . . ,1). We consider
the interpolation error in the space
FN :¼ ff : ½0;1�N ! R;Djmjf continues; mi 6 2;8ig; ð50Þ
where m 2 NN
0 and Djmj is the usual N-variate partial derivative of order jmj:
Djmj ¼ @jmj

@Ym1
1 � � �Y

mN
N

: ð51Þ
Then the interpolation error in the maximum norm is given by [23–25]
kf � Aq;Nðf Þk1 ¼ OðM
�2jlog2Mj3ðN�1ÞÞ; ð52Þ
where M ¼ dimðHðq;NÞÞ is the number of interpolation points.

3.5. From hierarchical interpolation to hierarchical integration

Any function u 2 C can now be approximated by the following reduced form from Eq. (47):
uðx;YÞ ¼
X
jij6q

X
j2Bi

wi
jðxÞ � ai

jðYÞ: ð53Þ
This expression can be considered as an approximate solution of the problem in Eqs. (9) and (10). It is just a simple weighted
sum of the value of the basis functions for all collocation points in the sparse grid. Therefore, we can easily extract the useful
statistics of the solution from it. For example, we can sample independently N times from the uniform distribution [0, 1] to
obtain one random vector Y, then we can place this vector into the above expression to obtain one realization of the solution.
In this way, it is easy to plot realizations of the solution as well as its PDF. On the other hand, if the Smolyak algorithm Eq.
(14) is used based on the cubature rule [29], although it is easy to calculate the mean and variance, it is difficult to extract the
value of the solution at a particular point in the random space. This is one of the advantages of applying the stochastic col-
location method based on the present interpolation rule, which allows us to obtain a visualization of the solution depen-
dence on the random variables. After obtaining the expression in Eq. (53), it is also easy to extract the mean and variance
analytically, leaving only the interpolation error.

The mean of the random solution can be evaluated as follows:
E½uðxÞ� ¼
X
jij6q

X
j2Bi

wi
jðxÞ �

Z
C

ai
jðYÞdY; ð54Þ
where the probability density function q(Y) is 1 since the stochastic space is a unit hypercube [0, 1]N. The 1D integral can be
evaluated analytically:
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Z 1

0
ai

jðYÞdY ¼
1; if i ¼ 1;
1
4 ; if i ¼ 2;

21�i; otherwise:

8><
>: ð55Þ
This is independent of the location of the interpolation point and only depends on the interpolation level in each stochastic
dimension due to the translation and dilation of the basis functions. Since the random variables are assumed independent of
each other, the value of the multi-dimensional integral is simply the product of the 1D integrals. Denoting

R
C ai

jðYÞdY ¼ Ii
j, we

can re-write Eq. (54) as
E½uðxÞ� ¼
X
jij6q

X
j2Bi

wi
jðxÞ � I

i
j: ð56Þ
Thus, the mean is just an arithmetic sum of the product of the hierarchical surpluses and the integral weights at each inter-
polation point.

To obtain the variance of the solution, we need to first obtain an approximate expression for u2, i.e.,
u2ðx;YÞ ¼
X
jij6q

X
j2Bi

v i
jðxÞ � ai

jðYÞ: ð57Þ
Then the variance of the solution can be computed as
Var½uðxÞ� ¼ E½u2ðxÞ� � ðE½uðxÞ�Þ2 ¼
X
jij6q

X
j2Bi

v i
jðxÞ � I

i
j �

X
jij6q

X
j2Bi

wi
jðxÞ � I

i
j

0
@

1
A2

: ð58Þ
3.6. Adaptive sparse grid interpolation

As discussed in Section 3.3, the magnitudes of the hierarchical surpluses decay to zero quickly as the level of interpolation
increases assuming a smooth function in the stochastic space. If the smoothness condition is not fulfilled, an adaptive sparse
grid is preferred, which for example may place more points around the discontinuity region and less point in the region of
smooth variation. One way to perform adaptation and refinement is on the level of the hierarchical subspaces Wi in Eq. (42).
This leads to the so called dimension-adaptive (anisotropic) sparse grids [36–38]. This approach detects important dimen-
sions and places all the collocation points from the hierarchical subspace W iþej along the important dimension j. Thus, this
method is not suitable if we want to look at the local behavior of the stochastic function. Alternatively, the adaptation and
refinement process can be performed on the level of the single hierarchical basis functions ai

j from Eq. (41). We then obtain a
method which, besides the detection of important dimensions, identifies and resolves singularities and local non-smooth
variations in the stochastic function [26,27,39]. In this section, we focus on the latter method and develop an adaptive sparse
grid stochastic collocation algorithm based on the error control of the hierarchical surpluses.

Before discussing the algorithm, let us first introduce some notation. The 1D equidistant points of the sparse grid in Eq.
(23) can be considered as a tree-like data structure as shown in Fig. 3. It is noted that special treatment is needed here going
from level 2 to level 3. For the nodes 0 and 1 in level 2, we only add one point along the dimension (there is only one son here
instead of two sons as is the case for all other subsequent levels of interpolation). Then, we can consider the interpolation
level of a grid point Y as the depth of the tree D(Y). For example, the level of point 0.25 is 3. Denote the father of a grid point
as F(Y), where the father of the root 0.5 is itself, i.e., F(0.5) = 0.5.

Thus, the conventional sparse grid in the N-dimensional random space can be reconsidered as
Hq;N ¼ Y ¼ fY1; . . . ;YNgj
XN

i¼1

DðYiÞ 6 q

( )
: ð59Þ
We denote the sons of a grid point Y = (Y1, . . . ,YN) by
SonsðYÞ ¼ fS ¼ ðS1; S2; . . . ; SNÞjðFðS1Þ; S2; . . . ; SNÞ ¼ Y; or ðS1; FðS2Þ; . . . ; SNÞ ¼ Y; . . . ; or ðS1; S2; . . . ; FðSNÞÞ ¼ Yg:
ð60Þ
From this definition, it is noted that, in general, for each grid point there are two sons in each dimension, therefore, for a grid
point in a N-dimensional stochastic space, there are 2N sons. It is also noted that, the sons are also the neighbor points of the
Fig. 3. 1D tree-like structure of the sparse grid.



3094 X. Ma, N. Zabaras / Journal of Computational Physics 228 (2009) 3084–3113
father. Recall from the definition of grid points from Eq. (23) and the definition of hierarchical basis from Eq. (41) that the
neighbor points are just the support nodes of the hierarchical basis functions in the next interpolation level. By adding the
neighbor points, we actually add the support nodes from the next interpolation level, i.e., we perform interpolation from le-
vel jij to level jij + 1. Therefore, in this way, we refine the grid locally while not violating the developments of the Smolyak
algorithm Eq. (47).

The basic idea here is to use hierarchical surpluses as an error indicator to detect the smoothness of the solution and re-
fine the hierarchical basis functions ai

j whose magnitude of the hierarchical surplus satisfies jwi
jjP e. If this criterion is sat-

isfied, we simply add the 2N neighbor points of the current point from Eq. (60) to the sparse grid. An example of a case with
two random variables is shown in Fig. 4. It is noted that the growth of the points scales linearly with increasing dimension-
ality rather than the O(2N) tree-like scaling of the standard h-type adaptive refinement as in a random element-based frame-
work, e.g. in ME-gPC.

In the Smolyak construction, we always perform the interpolation level by level. For each level, we first calculate the hier-
archical surplus for each point, then we check whether the adaptive criterion jwi

jjP e is satisfied. If so, we generate the 2N
neighboring points. There is a possibility that the neighbors have already been generated by other points. Therefore, it is crit-
ical to keep track of the uniqueness of the newly generated neighboring points. We refer to these newly generated neigh-
boring points as active points. To this end, we use the data structure hseti from the standard template library in C++ to
store all the active points and we refer to this as the active index set. hseti is a kind of sorted associative container that stores
unique elements (keys). When inserting a new element, this data structure will check if the new element already exists. If so,
it will not insert the element. If not, the element is inserted according to the ordering of the elements in the hseti. Due to the
sorted nature of the hseti, the searching and inserting is always very efficient. Another advantage of using this data structure
is that it is easy for a parallel code implementation. Since we store all of the new points from the next level in the hseti, we
can evaluate the surplus for each point in parallel, which increases the performance significantly.

In addition, when the discontinuity is very strong, the hierarchical surpluses may decrease very slowly and the algorithm
may not stop until a sufficiently high interpolation level. However, from Eq. (55), it is seen that the weights Ii

j decrease very
quickly as the level of interpolation increases. The same is true with the hierarchical surpluses. The contribution of this term
to the mean and the variance may be neglected in comparison to a certain desired accuracy level of the statistics. Therefore, a
maximum interpolation level is always specified as another stopping criterion. It is noted here that the definition of the level
of the Smolyak interpolation for the ASGC method is the same as that of the conventional sparse grid even if not all points are
included. The first hierarchical surplus is always the function value at the point (0.5, . . . ,0.5). There is a possibility that the
function value may be zero and thus the refinement terminates immediately. In order to avoid the early stop for the refine-
ment process, we always refine the first level and keep a provision on the first few hierarchical surpluses [26]. Therefore, let
e > 0 be the parameter for the adaptive refinement threshold. We propose the following iterative refinement algorithm
beginning with a coarsest adaptive sparse grid GN;N , i.e., we begin with the N-dimensional multi-index i = (1, . . . ,1), which
is just a point (0.5, . . . ,0.5).

(1) Set level of Smolyak construction k = 0.
(2) Construct the first level adaptive sparse grid GN;N .


 Calculate the function value at the point (0.5, . . . ,0.5);

 Generate the 2N neighbor points and add them to the active index set;

 Set k = k + 1.
(3) While k 6 kmax and the active index set is not empty:


 Copy the points in the active index set to an old index set and clear the active index set.

 Calculate in parallel the hierarchical surplus of each point in the old index set according to

wi
j ¼ f ðYi1

j1
; . . . ;YiN

jN
Þ � GNþk�1;Nðf ÞðYi1

j1
; . . . ; YiN

jN
Þ: ð61Þ
Fig. 4. An example of nodes and supports of a locally refined sparse grid in 2D random domain.
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Here, we use all of the existing collocation points in the current adaptive sparse grid GNþk�1;N . This allows us to evaluate
the surplus for each point from the old index set in parallel.


 For each point in the old index set, if jwi

jjP e
� Generate 2N neighbor points of the current active point according to Eq. (60);
� Add them to the active index set.


 Add the points in the old index set to the existing adaptive sparse grid GNþk�1;N . Now the adaptive sparse grid
becomes GNþk;N .


 k = k + 1.

(4) Calculate the mean and the variance, the PDF and if needed realizations of the solution (see Section 3.5).
Remark 1. In practice, instead of using wi
j, it is sometimes preferable to use v i

j from Eq. (57) as the error indicator. This is
because the hierarchical surplus v i

j is related to the calculation of the variance. In principle, we can consider it like a local
variance. Thus, it is more sensitive to the local variation of the stochastic function than wi

j. In all but the first example in
Section 4, the set threshold � refers to the surpluses v i

j. Recall that for accurate calculation of the variance in Eq. (58), both the
function and its square are interpolated independently, see Eqs. (56) and (57), respectively.

Remark 2. The algorithm developed here is different from the original algorithm in [26]. In [26], the sparse grid introduced
is based on the so called maximum-norm-based sparse grid [24,25]. It assumes that the function value vanishes on the
boundary and the hierarchical surplus is calculated through a N-dimensional stencil which gives the coefficients for a linear
combination of function values at the collocation points. Generally, this kind of sparse grid is not very suitable for high-
dimensional stochastic spaces [24,25].

Remark 3. It is also noted that, in the adaptive sparse grid G, we also keep some points whose surpluses are smaller than the
threshold when they are generated from their fathers whose surpluses are larger than the threshold. In other words, we want
to keep the adaptive sparse grid balanced, the so called balanced adaptivity, see [41]. This is different from the algorithm in
[26], where all of the points whose hierarchical surplus is less than the threshold are omitted.
3.6.1. Convergence and accuracy of the adaptive collocation method
For a threshold e and a fixed level q = N + k of the sparse grid interpolation, the approximation uq

Hðx;YÞ from Eq. (53) of the
conventional sparse grid method can be rewritten as a sum of two terms uq

G, representing the interpolation on the adaptive
sparse grid G and uq

< that accounts for all of the missing points (see also Remark 3) whose hierarchical surpluses are below
the threshold e. Since for any piecewise N-linear basis function ai

jðYÞ; kai
jk1 ¼ 1 [27], we can show that the error between the

adaptive sparse grid interpolation and that of using conventional sparse grid is
kuq
H � uq

Gk1 ¼ kuq
<k1 ¼

X
jij6q

X
j2Bi
jwi

j
j<e

jwi
jðxÞj � kai

jðYÞk1 6 eM2; ð62Þ
where M2 is the number of all missing points. When decreasing the threshold e, the number of missing terms M2 also de-
creases (as the tolerance is reduced, more points are locally refined). Therefore, we can see that indeed the approximation
of the adaptive sparse grid interpolation converges to the conventional interpolation case when decreasing the threshold e.
Accordingly, the interpolation error when using the adaptive spare grid collocation method can be approximated by
ku� uq
Gk1 ¼ ku� uq

H þ uq
H � uq

Gk1 6 ku� uq
Hk1 þ ku

q
H � uq

Gk1: ð63Þ
The first term in the equation above is the interpolation error of the conventional sparse grid collocation method (see Eq.
(52)). The second term is the error between the conventional and adaptive sparse grid collocation methods that was shown
to be of the order of OðeÞ. Numerical investigation of these errors are provided in Section 4.1.

Hereafter, for convenience, we use CSGC to denote the conventional sparse grid collocation method from Eq. (47) using
multi-linear basis functions and ASGC to denote the adaptive sparse grid collocation method from the algorithm introduced
in this section with the same basis functions.
4. Numerical examples

This section consists of four examples. The first example is used to demonstrate the failure of the dimension-adaptive
method when the singularity is not aligned along the grid. On the second example, we compare our method with MC and
the multi-element based method on a benchmark problem involving stochastic discontinuity. In the third example, we as-
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sess the ability of ASGC to detect the important dimension in a high-dimensional stochastic elliptic problem. In the last
example, Rayleigh–Bénard instability is considered to showcase the use of the method in physical problems.

4.1. Approximation of function with regularized line singularity

In this section, we demonstrate the ability of the ASGC method in interpolating given functions. The computed results are
compared with the CSGC method. We consider the function on [0, 1]2:
f ðx; yÞ ¼ 1
j0:3� x2 � y2j þ d

; ð64Þ
where d = 10�1. We first construct the interpolant Aq;2ðf Þ, then we randomly generate 1000 points in [0, 1]2 and finally com-
pute the error as follows:
e ¼ max
i¼1;...;1000

jf ðxiÞ � Aq;2ðf ÞðxiÞj: ð65Þ
The function of interest has a line singularity that is not along the grid lines, see Fig. 5. From the convergence plot with re-
spect to e on the left of Fig. 6, it is seen that the error converges nearly exponentially fast with respect to e. On the right of
Fig. 6, the convergence rate is shown with respect to the needed number of points for different thresholds. For example, it is
noted that for threshold e = 10�3 more points are needed than when using the other two thresholds shown but a higher level
of accuracy is obtained. Also note that much less points are needed in the ASGC than in the CSGC to achieve the same accu-
racy. The highest accuracy achieved for ASGC is 6.09 � 10�3, where the interpolation level is 19 and the number of points is
16,659 as opposed to 6,029,313 points using the same level of CSGC. The evolution of the adaptive grid for threshold e = 10�3

is shown in Fig. 7. The line of discontinuity is automatically detected by the ASGC method.
Since the line singularity is not along any dimension, it is expected that the dimension-adaptive (anisotropic) sparse grid

method [36,38] fails in this case. The results are shown in Fig. 8, where the algorithm is implemented using the MatLab
Sparse Grid Interpolation Toolbox developed by Klimke [42]. From the convergence plot, it is interesting to note that the con-
vergence rate is nearly the same as that of the CSGC method in Fig. 6. This is because the line singularity results in the same
importance of both dimensions and the anisotropic method thus puts points in all dimensions. This is seen from the sparse
grid in Fig. 8, where the grid is nearly the same as the full-tensor product case. Therefore, this example verifies that if the
singularity is not exactly along the dimensions, the dimension-adaptive sparse grid method is not applicable and identifies
the need to develop a different adaptive strategy that is working directly on the hierarchical basis as the one presented in this
paper.

4.2. Kraichnan–Orszag (K–O) problem

The transformed Kraichnan–Orszag three-mode problem can be expressed as [17]
dy1

dt
¼ y1y3;

dy2

dt
¼ �y2y3;

dy3

dt
¼ �y2

1 þ y2
2 ð66Þ
subject to initial conditions
Fig. 5. Line singularity: Comparison of the exact (left) and interpolant (right) functions using the ASGC method with threshold e = 10�3.
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Fig. 6. Line singularity: (left) Convergence of the ASGC method with respect to the threshold e; (right) Comparison of the interpolation error for
conventional and adaptive sparse grid interpolation using different threshold e values.
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y1ð0Þ ¼ Y1ð0;xÞ; y2ð0Þ ¼ Y2ð0;xÞ; y3ð0Þ ¼ Y3ð0; xÞ: ð67Þ
This problem shows a bifurcation on the parameter y1(0) and y2(0). The deterministic solutions of the problem are periodic,
and the period goes to infinity if the initial conditions are located at the planes y1 = 0 and y2 = 0, i.e., discontinuity occurs



Fig. 8. Line singularity: (left) Convergence of the dimension-adaptive method; (right) Dimension-adaptive sparse grid.
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when the initial conditions cross these two planes [17]. Here, we choose the random initial conditions subject to the uniform
distribution Y � U(�1, 1). In this formulation, the initial conditions cross the discontinuity plane and thus as expected the
gPC method fails in computing the solution to this problem. This problem was originally solved using ME-gPC and ME-
PCM in [17,18,31]. Here, we are addressing this problem using the ASGC method. The time integration of Eq. (66) is per-
formed using a fourth-order Runge–Kutta scheme. In all computations described in this section, a time step Dt = 0.01 was
used. Error convergence and comparison of computation cost with both ME-gPC and ME-PCM are conducted.

4.2.1. One-dimensional random input
At first, we study the following random initial conditions:
y1ð0Þ ¼ 1:0; y2ð0Þ ¼ 0:1Yð0;xÞ; y3ð0Þ ¼ 0: ð68Þ
In Fig. 9, we show the evolution of the variance within the time interval [0, 30] (short time behavior). For comparison, the
results of gPC are also included. The ‘exact’ solution is obtained using a quasi-random Sobol (MC-SOBOL) sequence with 106

iterations. Due to the discontinuity, the result from MC-SOBOL is much more accurate than the standard MC simulation di-
rectly sampling from the uniform distribution. It is seen that the gPC begins to fail at time t  8, while the ASGC method
converges even with a large threshold e = 0.1. From the adaptive sparse grid in Fig. 9, it is noted that even though most of
the points are refined as a result of the small threshold e, most of the refinement after level 8 occurs around the discontinuity
point Y = 0.0. The refinement stops at level 16, which corresponds to 425 number of points, while the conventional sparse
grid requires 65,537 points.

The maximum error of the variance of y1, y2 and y3 at t = 30 is tabulated in Table 1. The maximum error of the variance is
defined as maxi=1,2,3jVar(yi) � Var(yi,MC)j at t = 30. The ‘exact’ solution is taken as the results given by MC-SOBOL 106 itera-
tions. For each threshold e, we show the level when the refinement stops, the corresponding number of collocation points
and the error. It is seen that, with decreasing threshold, the stopping interpolation levels and the number of collocation
points increase. At the same time, the accuracy becomes better and we can approximately obtain an error of the order of
0.01e. We have also tabulated the error using MC-SOBOL and MC with the same number of samples. Although the MC-SOBOL
is a quasi-MC method with better convergence than the standard MC method, from the table it can be seen that the ASGC
procedure approximately leads to 2 and 1 orders of magnitude reduction in the error, as compared to MC and MC-SOBOL,
respectively. We then compare the computational cost between the ASGC and multi-element based methods (Table 2).
The error level is achieved by decreasing the error threshold e in AGSC and h1 in both ME-gPC and ME-PCM. It is noted that
we conduct the ME-gPC using a third-order expansion while we use linear basis functions in ASGC. In ME-PCM, a level 3
Clenshaw–Curtis sparse grid is used in each element. From the results, we note that for comparable accuracy, both the ASGC
method and ME-PCM are much faster than the h-adaptive ME-gPC. Although using higher-order gPC expansion can reduce
the number of random elements, the increase of the expansion terms results in more computation time. On the other hand,
the computational time is nearly the same for ASGC and ME-PCM. However, it is more meaningful to compare the number of
function calls since both methods are based on a collocation algorithm. Many more points are needed for the ME-PCM than
the ASGC to achieve the same accuracy.

The long-term behavior of the solution is presented in Fig. 10 within the time interval [0, 100]. The corresponding real-
izations at different times as a function of random variable Y are given in Fig. 11. These realizations are reconstructed using
hierarchial surpluses according to Eq. (53). It is seen that at earlier time, the discontinuity has not yet been developed, which
explains the reason the gPC is accurate at earlier times. With increasing time, the discontinuity is growing stronger and the
solution is very oscillatory. Thus, many more interpolation points are needed to successfully resolve the discontinuity.
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Now, instead of a point, the discontinuity region becomes a line. In Fig. 12, we show the evolution of the variance of y1, y2, y3

and the adaptive sparse grid. We restrict the maximum interpolation level to 20, which is sufficient for achieving desired
accuracy. As before, we also include for comparison the result obtained by the gPC with order p = 10. From these results,
it can be seen that even though the gPC fails at a larger time, the adaptive collocation method converges to the reference
solution given by MC-SOBOL with 106 iterations. From the adaptive sparse grid, we can see that more points are placed
around the line Y1 = 0, since we know that the discontinuity crosses the plane Y1 = 0. The maximum error of the variance
of y1, y2 and y3 at t = 10 is tabulated in Table 3. The ‘exact’ solution is taken as the results given by MC-SOBOL as before.
Due to the increased discontinuity, the reduction of the error from ASGC compared with that of the MC-SOBOL is not as sig-
nificant as in the one-dimensional input case. However, the error is still much better than that of the standard MC method.
The comparison of the computational cost is given in Table 4. The error level is defined the same as before. We still use a
third-order expansion for ME-gPC and level 3 Clenshaw–Curtis sparse grid for ME-PCM and vary h1 while fixing h2 = 10�2.
In this situation, the speed up of the ASGC and ME-PCM with respect to the ME-gPC is still obvious. It is interesting to note
that the ME-PCM is much faster than ASGC, although the number of collocation points is about ten times more than that of
ASGC. This is because the computational time of the deterministic problem may be ignored since it is a simple ODE. Most of
the time in the ASGC is spent on hierarchical surplus calculation and communication between different processors due to
MPI parallelization. Therefore, in terms of functional evaluations, ME-PCM is much more expensive than the ASGC.

4.2.3. Three-dimensional random input
In this section, we study the K–O problem with 3D random input
e of y1, Top right: Mean ofy1, Bottom left: Variance oy
y1ð0Þ ¼ Y1ð0;xÞ; y2ð0Þ ¼ Y2ð0;xÞ; y3ð0Þ ¼ Y3ð0; xÞ: ð70Þ
This problem is much more difficult than any of the other problems examined previously. This is due to the strong discon-
tinuity (the discontinuity region now consists of the planes Y1 = 0 and Y2 = 0) and the moderately-high dimension. It can be
f2, Bottom right:



Fig. 11. Realizations of the solution (y1, y2, y3) for the 1D K–O problem as a function of the random variable Y at different times.
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verified from comparison with the result obtained by MC-SOBOL that unlike the previous results, here 2 � 106 iterations are
needed to correctly resolve the discontinuity. Due to the symmetry of y1 and y2 in Eq. (66) and the corresponding random
input, the variances of y1 and y2 are the same. Therefore, in Fig. 13 we only show the results for y1 and y3. The maximum
interpolation level is set at 15. Finally, in order to show the implementations of h-adaptive multi-element based methods
are correct, we provide the results from both methods in Fig. 14. The computation results for the ASGC, ME-gPC and ME-
PCM methods are shown in Tables 5–7, respectively, where we fix h1 = 10�4 and h2 = 10�3. The error is defined as the max-
imum of the absolute error of the variance of y2 and y3 at time t = 10 from the ‘exact’ solution given by MC-SOBOL with
2 � 106 iterations. It is seen that although the ASGC method has larger error compared with MC-SOBOL and the convergence
rate is not optimal, it has better accuracy than the standard MC method. In addition, it is still much faster than the ME-gPC
for a comparable accuracy of the order of 10�4. Due to the strong discontinuity in this problem, it took much longer time for
both the ASGC and ME-PCM to arrive at the same accuracy than in the 2D problem. It is interesting to note that ME-PCM is
the fastest method in this case. However, as before, to achieve the same accuracy as the ASGC, many more points are re-
quired for the ME-PCM. The advantage of ME-PCM is its p-type convergence such that the error quickly drops to the order
of 10�6 when interpolation level increases to 8 in each element. However, the number of function evaluations is 10 times
more than that of the reference solution. Therefore, the efficiency of all the methods over the MC method is not as obvious
as in the previous two examples. In this extreme case, the MC-SOBOL is more favorable.

4.3. Stochastic elliptic problem

In this section, we compare the convergence rate of the CSGC and ASGC methods through a stochastic elliptic problem in
two spatial dimensions. As shown in the previous examples, the adaptive sparse grid collocation method can accurately cap-
ture the non-smooth region of the stochastic space. Therefore, when the non-smooth region is along a particular dimension
(i.e., one dimension is more important than others), the ASGC method is expected to identify and resolve it. In this example,
we demonstrate this ability of the ASGC method to detect important dimensions when each dimension weighs unequally.
This is similar to the dimension-adaptive method, especially in high stochastic dimension problems.

Here, we adopt the model problem from [30]:
�r � ðaNðx; �Þruðx; �ÞÞ ¼ fNðx; �Þ; in D� C

uðx; �Þ ¼ 0; on @D� C; ð71Þ
with the physical domain D = {x = (x, y) 2 [0, 1]2}. To avoid introducing large errors from physical discretization, we take a
deterministic smooth load fN(x, x, y) = cos(x)sin(y) with homogeneous boundary conditions. Therefore, we assume that there
are no substantial errors from the physical discretization. The deterministic problem is solved using the finite element meth-
od with 900 bilinear quadrilateral elements. Furthermore, as in [30], in order to eliminate the errors associated with a



numerical Karhunen–Loève expansion solver and to keep the random diffusivity strictly positive, we construct the random
diffusion coefficient aN(x, x) with 1D spatial dependence as



Fig. 13. Evolution of the variance of y1 = y2 (left) and y3 (right) for the 3D K–O problem using ASGC.

Fig. 14. Evolution of the variance of y1 = y2 (left) and y3 (right) for the 3D K–O problem using both ME-gPC and ME-PCM. Both results are obtained with
h1 = 10�4 and h2 = 10�3.

Table 5
Computational results for 3D K–O problem using ASGC.

ASGC MC MC-SOBOL

Threshold #Points Error Time (h) Error Error

10�1 46,953 1.95 � 10�3 0.09 2.72 � 10�3 6.23 � 10�5

10�2 210,177 2.95 � 10�4 0.85 8.99 � 10�4 6.61 � 10�5

10�3 498,025 1.58 � 10�4 3 5.47 � 10�4 2.74 � 10�5

Table 6
Computational results for 3D K–O problem using h-adaptive ME-gPC.

order p h-adaptive ME-gPC

#Elements Error Time (h)

3 5584 1.10 � 10�3 10
4 3256 5.85 � 10�4 22.5
5 2336 3.29 � 10�4 39
6 1624 2.98 � 10�4 108
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Table 7
Computational results for 3D K–O problem using h-adaptive ME-PCM.

Level k h-Adaptive ME-PCM

#Points Error Time (h)

6 590,364 4.15 � 10�3 0.05
7 14,305,746 1.53 � 10�3 0.48
8 15,788,608 6.78 � 10�6 0.55
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logðaNðx; xÞ � 0:5Þ ¼ 1þ Y1ðxÞ
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Yn(x), n = 1, . . . ,N, are independent uniformly distributed random variables in the interval ½�
ffiffiffi
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;
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�. The parameter Lp in Eq.

(74) can be taken as Lp = max{1, 2Lc} and the parameter L in Eqs. (72) and (73) is L = Lc/Lp. This expansion is similar to a Karh-
unen–Loève expansion of a 1D random field with stationary covariance
cov½logðaN � 0:5Þ�ðx1; x2Þ ¼ exp
�ðx1 � x2Þ2

L2
c

 !
: ð75Þ
Small values of the correlation length Lc correspond to slow decay in Eq. (72), i.e., each stochastic dimension weighs almost
equally. On the other hand, large values of Lc result in fast decay rates, i.e., the first several stochastic dimensions correspond-
ing to large eigenvalues weigh most importantly. By using the expansion Eq. (72), it is assumed that we are given an analytic
stochastic input. Thus there is no truncation error. It is different from the discretization of a random field using the K–L
expansion, where for different correlation lengths we keep different terms accordingly. In this example, we fix N and change
Lc to adjust the importance of each stochastic dimension. In this way, we want to investigate the effect of correlation length
Lc on the ability of the ASGC method to detect important dimensions.

To study the convergence of the algorithm, we consider a problem where the interpolation level increases linearly. We
estimate the L2(D) approximation error for the mean and the variance. Specifically, to estimate the computation error in
the qth level, we fix the dimension N and compare the results at two consecutive levels, e.g. the error for the mean is
E½Aq;NðuNÞ � Aqþ1;NðuNÞ�. Similar error is defined for the variance. The results are shown in Fig. 15 for different correlation
lengths at N = 11. Each symbol denotes one interpolation level. To compare the convergence rate between the CSGC and
ASGC methods, we choose the same maximum interpolation level for both methods. Then we decrease the threshold e until
the ASGC method arrives approximately at the same accuracy as the CSGC method. In [30], the authors proved for the sto-
chastic elliptic problem that the convergence rate for the CSGC is nearly exponential. Since linear basis can be consider as
polynomial order one, it is seen in Fig. 15 that the error for CSGC indeed decreases nearly exponentially which verifies
the result in [30]. For small correlation lengths, the effects on the convergence rate for both CSGC and ASGC are nearly
the same. On the other hand, for large correlation length, if we adopt the ASGC method, much less number of collocation
points is required to achieve the same accuracy as the CSGC method. This is because more points are placed along the impor-
tant dimensions which are associated with large eigenvalues. Therefore, the larger correlation lengths have positive effects
on the rate of convergence, while decreasing Lc leads to a deterioration of the rate of convergence of the ASGC method due to
equal weighting of all directions. It is also noted that, for small correlation length, we need a small threshold to achieve the
desired accuracy. Smaller correlation length indicates a smoother stochastic space. The surplus also decreases very fast.
Therefore, for a larger threshold, the refinement stops earlier.

Next, in Fig. 16 we study some higher-dimensional case. Due to the rapid increase in the number of collocation points, we
focus on a moderate correlation length Lc = 0.6 so that the ASGC is effective. From this figure, it is seen that for N P 25, the
ASGC method successfully detects the important dimensions and terminates the refinement automatically. The expansion in
Eq. (72) is dominated by the first several terms which depend on the chosen correlation length. Since we choose a moderate
large value of Lc, the important expansion terms associated with large eigenvalues are almost the same for the four cases
considered in Fig. 16. Thus, the error level that can be achieved is nearly identical for the four cases. However, many more
points are needed for increasing dimensions. Therefore, it is rather difficult to solve this problem using the CSGC method. For
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Fig. 15. The convergence of the stochastic elliptic problem in N = 11 dimensions for different correlation lengths Lc = 1/2, 1/4, 1/8, 1/16, using both the CSGC
and ASGC methods.
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example, when N = 75 and e = 10�6, the refinement using the ASGC method stops at level 8 and the corresponding number of
points is 276,913. On the other hand, the number of points required for the CSGC method with the same interpolation level is
3.5991 � 1011.

In order to further verify our results, we compare the mean and the variance when N = 75 using the AGSC method with
e = 10�6 with the ‘exact’ solution given by MC simulation with 106 samples. The comparison is shown in Fig. 17 over the en-
tire physical domain. The relative error is defined as jEðAq;NðuNÞÞ�EðuMC Þj

jEðuMC Þj
. The maximum relative error for the mean is 9.89 � 10�4,

while the maximum relative error for the variance is 5.29 � 10�3. Therefore, the ASGC method is indeed a very accurate
method comparable to the MC method even in high stochastic dimensions. The computational time is about 0.5 h, which
is much less than the time needed by the MC method which took about 2 h on 10 processors.

We also compare the convergence rate with the standard MC method. L2(D) error is computed by comparing the solution
with a reference solution computed from 106 MC samples. The results are shown in Fig. 18. As expected, when the correla-
tion length is large, the ASGC method is most effective. With the same number of points, the error of the ASGC is nearly one-
order lower than that of the MC method. When the correlation length decreases, the effect of the ASGC is nearly the same as
that of the CSGC. Thus, the convergence rate becomes slower as seen in the right plot of Fig. 18, where the ASGC error is
nearly one-order larger than the MC error. This is due to the performance of the CSGC method suffering from increasing
number of dimensions (unlike MC method) as a result of the weak dependence on the dimensionality in the logarithmic term
of the error bound as indicated in Eq. (52). To achieve a desired accuracy, we have to increase the interpolation level. How-
ever, the number of collocation points will increase excessively fast as shown in Fig. 19, and therefore the problem becomes
prohibitively expensive. We also implemented the ME-PCM version of this problem that however was not appropriate for
such high-dimensional problem. When we start solving this problem with only one element, due to the large local variance,
the method tends to split the element in every dimension, which results in 225 new elements thus exceeding computer
memory. Therefore, the multi-element based domain decomposition method depends much more on the dimensionality
than the ASGC does.



ε
ε
ε

ε
ε

ε

ε
ε
ε

.38ε

ε

ε

ε
ε

ε

ε

ε

εε

ε

ε

ε
ε

Fig. 16. The convergence of the stochastic elliptic problem in N = 25, 50, 75, 100 dimensions for correlation length Lc = 0.6 using the ASGC method.

Fig. 17. Relative error of the mean (left) and variance (right) when N = 75 using the ASGC method with error threshold e = 10�6. The ‘exact’ results are given
by MC with 106 iterations.
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In summary, the results show that, besides indicating local variance in the solution, the ASGC method is also an efficient
numerical approach to detect the important dimensions in the stochastic space. This plays the same role as in the dimen-
sional adaptive method, in particular in problems with high stochastic dimension. However, the performance of the method
depends on the smoothness of the stochastic space. If the stochastic space is rather smooth (i.e., all stochastic dimensions are
equally important), the MC method is still the best choice for problems with a high number of stochastic dimensions. Finally,
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it is also noted that the adaptation discussed here is not the same as that in the dimensional adaptive method [36,38]. Be-
sides adding the points along the important dimensions, we here also add all the associated neighboring points.

4.4. Application to Rayleigh–Bénard instability

Finally, we study the well-known stochastic Rayleigh–Bénard problem with random boundary temperature around the
neighborhood of the critical point. Natural convection starts when the fluid buoyancy effect due to temperature gradients
exceeds the stabilizing viscous effect. The state where these opposing effects neutralize each other is called the critical point.
Below this point, the viscous effect dominates, the fluid-flow vanishes and heat transfer takes place purely by conduction.
Above this point, the buoyancy effect dominates, fluid-flow is initiated and heat transfer is by conduction and convection.
When the system inputs fluctuate about the critical point, the input–output relationship becomes highly non-linear and pos-
sibly discontinuous due to drastic change in the governing dynamics. This problem was previously solved using the Wiener–
Haar expansion [15] and the stochastic Galerkin method [14]. Here, we study it using the ASGC method.

4.4.1. Deterministic problem
Consider a 2D bounded domain D � R2 with a boundary @Dd

S
@Dn. Dirichlet boundary conditions are applied on @Dd,

while Neumann boundary conditions are applied on @Dn. The deterministic problem consists of finding the velocity u, pres-
sure p and temperature h such that the following non-dimensional governing equations are satisfied:
r � u ¼ 0; ð76Þ
@u
@t
þ u � ru ¼ �rpþ Prr2uþ Fðu; hÞ; ð77Þ

@h
@t
þ u � rh ¼ r2h; ð78Þ
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where F(u, h) is the forcing function in the Navier–Stokes equations and Pr is the Prandtl number of the fluid. In the problems
considered later, F(u, h) is the Bousinnessq approximated buoyant force term �RaPrhg, where Ra is the thermal Rayleigh
number and g is the gravity vector.

Here, we want to study the stochastic formulation of this problem. The physical domain is taken to be a closed cavity [0,
1]2 filled with air (Pr = 0.7). No-slip conditions are imposed on the boundary. The vertical walls are assumed to be adiabatic.
The top wall is maintained under a deterministic cold temperature hc = � 0.5. The bottom wall temperature is assumed to be
a random hot temperature hh. The statistics of hh are assumed to be such that both stable and unstable modes occur with
finite probability. We set Ra = 2500, which is larger than the critical Rayleigh number, so that convection can be initialized
by varying the hot wall temperature.

Under these conditions the problem is to find stochastic functions that describe the velocity u � uðx; t;xÞ : D�
½0; T� � C! R2, pressure p � pðx; t;xÞ : D� ½0; T� � C! R and temperature h � hðx; t;xÞ : D� ½0; T� � C! R, such that the
following equations are satisfied:
r � uð�;xÞ ¼ 0; in D� ½0; T� � C; ð79Þ
@uð�;xÞ

@t
þ uð�;xÞ � ruð�;xÞ ¼ �rpð�;xÞ þ Prr2uð�;xÞ þ Fðuð�;xÞ; hð�;xÞÞ; in D� ½0; T� � C; ð80Þ

@hð�;xÞ
@t

þ uð�;xÞ � rhð�;xÞ ¼ r2hð�;xÞ; in D� ½0; T� � C: ð81Þ
The deterministic governing Eqs. (76)–(78) are solved using the second-order stabilized projection finite element method
developed in [43]. The spatial domain is discretized using 40 � 40 bilinear quadrilateral finite elements. Prior to stochastic
simulation, several deterministic computations were performed in order to find out the range where the critical point lies in.
These simulations were conducted by perturbing the hot wall temperature from the purely conductive solution. We monitor
the time evolution of the average kinetic energy in the field as illustrated in Fig. 20. It is seen that after a short time, the
kinetic energy exhibits growth (heat convection mode) or decay (heat conduction mode) until steady-state is arrived,
depending on the hot wall temperature. Therefore, the critical temperature lies in the range [0.5, 0.55]. In addition, we also
monitor the steady-state Nusselt number which denotes the rate of heat transfer:
Nu � 1
hh � hc

Z 1

0

@h
@y
jy¼0dx: ð82Þ
Clearly, in the conductive (stable) regime, Nu = 1. For temperature larger than the critical value, convection is initialized and
heat transfer enhancement occurs so that Nu(hh) > 1. The results are shown in Table 8. Obviously, when the hot wall tem-
perature is larger than 0.55, heat convection begins. This again verifies the critical hot wall temperature lies in the range
[0.5, 0.55]. However, the exact critical value is not known to us. So, we now try to capture this unstable equilibrium using
the ASGC method.

4.4.2. Adaptive sparse grid collocation scheme
In this section, we assume the following stochastic boundary condition for the hot wall temperature:
hh ¼ 0:4þ 0:3Y; ð83Þ
where Y is a uniform random variable in the interval [0,1]. Following the discussion above, both a stable and an unstable flow
occur for this range of hh.
Fig. 20. Evolution of the average kinetic energy for different hot wall temperatures.



θθ

δ

Fig. 21. Steady-state dNu (left) versus hot wall temperature using ASGC and the corresponding adaptive sparse grid with threshold e = 0.01 (right).

Table 8
Steady-state Nusselt number for different hot wall temperatures.

hh 0.30 0.40 0.50 0.55 0.60 0.70
Nu 1.00000 1.00000 1.00000 1.01496 1.07357 1.17744

θ

θ

θ θ

Fig. 22. Solution of the state variables versus hot wall temperature at point (0.1, 0.5). Top left: u velocity, Top right: v velocity, Bottom: temperature.
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As discussed above, for the conductive regime, Nu = 1 and Nu > 1 when heat convection occurs. Thus, the difference
dNu � Nu (hh) � 1 provides a measure of the heat transfer enhancement. This result is provided in the left of Fig. 21. The re-
sult is reconstructed from the hierarchical surplus of the solution. It is noted that, the critical value is about 0.541, since be-
low this value dNu = 0.0 and an essentially linear increase of dNu with hh is observed beyond this value. This can be further
verified from the corresponding adaptive sparse grid in the same figure shown on the right. For the first 6 interpolation lev-
els, it is seen that less points are placed on the left hand side of point 0.55, which is expected due to the pure conduction
mode in this region. In this region of the random space, the solution is smooth and the magnitude of the hierarchical sur-
pluses decrease very quickly. On the other hand, almost all points on the right of point 0.55 are refined since heat convection
occurs in this regime. After level 6, we can see that only the points around point 0.541 refine until the refinement stops at
interpolation level 12, which suggests larger hierarchical surpluses occur there and that the solution is not very smooth in
the neighborhood. Therefore, the critical value for the hot wall temperature is indeed about 0.541, which is consistent with
our discussion in Section 4.4.1. In addition, we also plot in Fig. 22 the solution of the state variables at point (0.1, 0.5) as a
function of hot wall temperature. At this point the solution exhibits a higher variance in temperature (see also Fig. 26 at the
end of this section). Again, the same critical point is predicted from Fig. 22. Specifically, the velocity vanishes below the point
0.541 and increases with hh beyond this points where heat convection occurs. The temperature increases linearly with the
Fig. 23. Prediction of the temperature when hh = 0.436984 using ASGC (left) and the solution of the deterministic problem using the same hh.
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same realization of the random variable. The comparison of the results is shown in Fig. 23. The velocities are zero and thus
they are not shown. We can see that the contour distribution of the temperature is characterized by parallel horizontal lines
which is a typical distribution for heat conduction. The prediction from the collocation method is the same as the determin-
istic solution. We repeat this process by sampling a hot wall temperature from the convection regime. The results are shown
in Fig. 24. Again, the results compare very well and correctly predict the convective behavior. It is interesting to note that the
difference of the maximum value of the velocity between the predicted and deterministic solutions is within the order
O(10�3), which is consistent with the error threshold 10�2.

Finally, we provide the mean and variance in Figs. 25 and 26, respectively. We also include for comparison the results
obtained with the MC-SOBOL sequence with 104 iterations. The results compare very well, which again verifies the accuracy
of the present method. The number of collocation points, i.e., the number of runs of the deterministic simulator needed for
the adaptive sparse grid is 49, while the computation time is about 1.5 h. However, the computation time for MC-SOBOL is
15 h. Therefore, the time needed by the MC method is much more than that for the ASGC.

In summary, the ASGC method can successfully capture the unstable equilibrium in natural convection. In addition, it can
also predict quite accurately the critical point.
5. Conclusions

In this paper, we developed an adaptive hierarchical sparse grid collocation method based on the error control of local
hierarchical surpluses. By utilizing multi-linear hierarchical basis functions of local support, this method can resolve success-
fully discontinuities in the stochastic space. Through numerical examples, we demonstrated that in the presence of discon-
tinuity in the stochastic space, this approach leads to significant reduction in the number of points required to achieve the
same level of accuracy as the CSGC method. Unlike the dimension-adaptive collocation method developed earlier, the cur-
rent method refines the sparse grids locally by working directly in the hierarchical basis. Thus, besides the detection of
important dimensions as dimension-adaptive methods can do, additional singularity and local behavior of the solution
can also be revealed. By applying this method to the Rayleigh–Bénard instability, it is shown that the adaptive sparse grid
can accurately predict the critical point.

We provided extensive comparisons with the ME-gPC and ME-PCM methods (note that the ME-PCM work [31] was sub-
mitted for publication to this journal long after the initial submission of this work and an adaptive version of it was imple-
mented here during revision). Due to the decoupled nature of the stochastic collocation method, it is shown that the
computational cost of the ASGC and ME-PCM methods is much less than that of the ME-gPC method at least for the low-
dimensional problems considered. The ME-PCM is even faster than the ASGC in terms of computational time for low-dimen-
sional problems. However, the ASGC requires much less number of collocation points than the ME-PCM to achieve the same
accuracy. Furthermore, the multi-element based method is not suitable for high-dimensional problems due to its O(2N) tree-
like scaling of the standard h-type adaptive refinement. An interesting topic is to combine the ASGC and multi-element
method, i.e., solving stochastic problems using the ASGC in each random element. The accuracy and efficiency of this method
is worth further investigation.

Solutions are also compared with MC results. For the 3D K–O problem, due to the rather strong discontinuity, the con-
vergence rate of the AGSC is not optimal compared with MC. However, in general, the ASGC can achieve a desired accuracy
at a cost much lower than that of the MC method provided that the ASGC is effective in detecting the regularity in the sto-
chastic space. On the other hand, as shown in the stochastic elliptic problem, if each dimension weighs almost equally for a
high-dimensional problem, the ASGC is not the best choice. This is because although the Smolyak algorithm depends less on
dimensionality than the gPC method, it still suffers with increasing number of dimensions due to the weak dependence on
the dimensions in the logarithmic term of the error bound. Therefore, for problems with high stochastic dimensions, the
Monte Carlo method, which is independent of the number of random dimensions, is more favorable than any other method
discussed in this paper.

It is also worth noting that the ASGC method not only gives us the solution statistics the same as using MC, but also
calculates an approximate functional representation of the solution in the stochastic space. Therefore, in the context of func-
tion approximation, MC is not applicable to solve stochastic problems. Currently, the ME-PCM is based on quadrature rule
and only gives us mean and variance. Although it can provide response surface of the solution by projecting the collocation
solution onto the gPC basis, it is not as straightforward as the ASGC since it needs to search in the multi-element grid.

To increase the convergence rate of this method, we are currently implementing the use of higher-order polynomials of
local support as introduced in [23,27]. In addition, since the local refinement still treats each dimension equally, we plan to
couple the local adaptive nature of the current methodology with the dimension-adaptive method that can detect locally the
important dimension(s).
Acknowledgments

This research was supported by the Computational Mathematics program of AFOSR (Grant F49620-00-1-0373) and by the
Computational Mathematics program of the NSF (Award DMS-0809062). The computational work was supported in part by
the National Science Foundation through the TeraGrid resources provided by NCSA.



X. Ma, N. Zabaras / Journal of Computational Physics 228 (2009) 3084–3113 3113
References

[1] R.L. Iman, W.J. Conover, Small sample sensitivity analysis techniques for computer models, with an application to risk assessment, Commun. Statist. A9
(1980) 1749–1842.

[2] R. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
[3] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938) 897–936.
[4] R. Ghanem, Probabilistic characterization of transport in heterogeneous media, Comput. Meth. Appl. Mech. Eng. 158 (1998) 199–220.
[5] R. Ghanem, A. Sarkar, Mid-frequency structural dynamics with parameter uncertainty, Comput. Meth. Appl. Mech. Eng. 191 (2002) 5499–5513.
[6] R. Ghanem, Higher order sensitivity of heat conduction problems to random data using the spectral stochastic finite element method, ASME J. Heat

Transfer 121 (1999) 290–299.
[7] D. Xiu, G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24 (2002) 619–644.
[8] D. Xiu, G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Meth. Appl. Mech. Eng.

191 (2002) 4927–4948.
[9] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys. 187 (2003) 137–167.

[10] D. Xiu, G.E. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty, Int. J. Heat Mass Transfer 46 (2003) 4681–
4693.

[11] I. Babuska, R. Tempone, G.E. Zouraris, Galerkin finite elements approximation of stochastic finite elements, SIAM J. Numer. Anal. 42 (2004) 800–825.
[12] M.K. Deb, I.K. Babuska, J.T. Oden, Solution of stochastic partial differential equations using the Galerkin finite element techniques, Comput. Meth. Appl.

Mech. Eng. 190 (2001) 6359–6372.
[13] I. Babuska, R. Tempone, G.E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic

formulation, Comput. Meth. Appl. Mech. Eng. 194 (2005) 1251–1294.
[14] B. Velamur Asokan, N. Zabaras, Using stochastic analysis to capture unstable equilibrium in natural convection, J. Comput. Phys. 208 (2005) 134–153.
[15] O.P. Le Maı̂tre, H.N. Najm, R.G. Ghanem, O.M. Knio, Uncertainty propagation using Wiener–Haar expansions, J. Comput. Phys. 197 (2004) 28–57.
[16] O.P. Le Maı̂tre, H.N. Najm, R.G. Ghanem, O.M. Knio, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys. 197

(2004) 502–531.
[17] X. Wan, G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys. 209

(2005) 617–642.
[18] X. Wan, G.E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput. 28 (2006) 901–928.
[19] X. Wan, G.E. Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations, Comput. Meth. Appl. Math. Eng. 195 (2006) 41–43.
[20] I. Babuska, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, ISIAM J. Numer.

Anal. 45 (2007) 1005–1034.
[21] S. Smolyak, Quadrature and interpolation formulas for tensor product of certain classes of functions, Soviet Math. Dokl. 4 (1963) 240–243.
[22] T. Gerstner, M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998) 209–232.
[23] V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math. 12 (2000) 273–288.
[24] A. Klimke, B. Wohlmuth, Algorithm 847: spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB, ACM Trans. Math. Software

31 (2005).
[25] A. Klimke, Uncertainty Modeling using Fuzzy Arithmetic and Sparse Grids, Ph.D. Thesis, Universität Stuttgart, Shaker Verlag, Aachen, 2006.
[26] M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences, Computing 61 (1998) 151–179.
[27] H.J. Bungartz, M. Griebel, Sparse grids, Acta Numerica 13 (2004) 147–269.
[28] D. Xiu, J.S. Hesthaven, High order collocation methods for the differential equation with random inputs, SIAM J. Sci. Comput. 27 (2005) 1118–1139.
[29] D. Xiu, Efficient collocational approach for parametric uncertainty analysis, Commun. Comput. Phys. 2 (2007) 293–309.
[30] F. Nobile, R. Tempone, C. Webster, A sparse grid collocation method for elliptic partial differential equations with random input data, SIAM J. Numer.

Anal. 45 (2008) 2309–2345.
[31] J. Foo, X. Wan, G.E. Karniadakis, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications, J. Comput. Phys. 227

(2008) 9572–9595.
[32] D.L. Donoho, Interpolating wavelet transforms, preprint, Stanford University, 1992.
[33] S. Bertoluzza, G. Naldi, A wavelet collocation method for the numerical solution of partial differential equations, Appl. Comput. Harmon. Anal. 3 (1996)

1–9.
[34] O.V. Vasilyev, S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving differential equations in a finite domain, J. Comput.

Phys. 125 (1996) 498–512.
[35] O.V. Vasilyev, S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs, J. Comput. Phys. 138 (1997) 16–56.
[36] T. Grestner, M. Griebel, Dimension adaptive tensor product quadrature, Computing 71 (2003) 65–87.
[37] B. Ganapathysubramanian, N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys. 225 (2007) 652–

685.
[38] F. Nobile, R. Tempone, C. Webster, An anisotropic sparse grid collocation method for elliptic partial differential equations with random input data,

SIAM J. Numer. Anal. 46 (2008) 2411–2442.
[39] M. Griebel, Sparse grids and related approximation schemes for high dimensional problems, in: Proceedings of the Conference on Foundations of

Computational Mathematics, Santander, Spain, 2005.
[40] B. Oksendal, Stochastic Differential Equations: An introduction with applications, Springer-Verlag, New York, 1998.
[41] H.-J. Bungartz, S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids, Computing 71 (2003) 89–114.
[42] A. Klimke, Sparse Grid Interpolation Toolbox – User’s Guide, IANS report 2006/001, University of Stuttgart, 2006.
[43] X. Ma, N. Zabaras, A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media, J.

Comput. Phys. 227 (2008) 8448–8471.


	An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
	Introduction
	Problem definition
	The finite-dimensional noise assumption and the Karhunen–Loève expansion

	Stochastic collocation method
	Smolyak algorithm
	Choice of collocation points and the nodal basis functions
	From nodal basis to multivariate hierarchical basis
	Interpolation error
	From hierarchical interpolation to hierarchical integration
	Adaptive sparse grid interpolation
	Convergence and accuracy of the adaptive collocation method


	Numerical examples
	Approximation of function with regularized line singularity
	Kraichnan–Orszag (K–O) problem
	One-dimensional random input
	Two-dimensional random input
	Three-dimensional random input

	Stochastic elliptic problem
	Application to Rayleigh–Bénard instability
	Deterministic problem
	Adaptive sparse grid collocation scheme


	Conclusions
	Acknowledgments
	References


